1D Coulomb problem with deformed Heisenberg algebra

Taras Fityo, Volodymyr Tkachuk and Ivan Vakarchuk Chair for Theoretical Physics, Ivan Franko Lviv National University

Symmetry in Nonlinear Mathematical Physics June, 20-26, Kyiv

In this report we consider one dimensional quantum mechanics with the following deformation

$$
\begin{equation*}
[X, P]=i\left(1+\beta P^{2}\right) \tag{1}
\end{equation*}
$$

Such a deformation implies that there exists minimal resolution of length $\Delta X \geq \sqrt{\beta}$, i.e., there is no possibility to measure coordinate X with accuracy more then ΔX. It is expected that deformation can help to avoid divergences.

We solve eigenvalue equation for Coulomb-type potential

$$
\begin{equation*}
P^{2} \psi-\frac{\alpha}{X} \psi=E \psi \tag{2}
\end{equation*}
$$

Momentum representation

$$
\begin{equation*}
P=p, \quad X=i\left(1+\beta p^{2}\right) \frac{d}{d p} . \tag{3}
\end{equation*}
$$

We have to redefine scalar product to ensure Hermicity of X :

$$
\begin{equation*}
\langle\phi \mid \psi\rangle=\int_{-\infty}^{\infty} \frac{\phi^{*}(p) \psi(p)}{1+\beta p^{2}} d p, \quad\langle\phi \mid A \psi\rangle=\int_{-\infty}^{\infty} \frac{\phi^{*}(p)}{1+\beta p^{2}} A \psi(p) d p \tag{4}
\end{equation*}
$$

It is naturally to demand

$$
\begin{equation*}
X \frac{1}{X}=1 \tag{5}
\end{equation*}
$$

Multiplication of eigenvalue equation gives

$$
\begin{equation*}
X P^{2} \psi-\alpha \psi=E X \psi \tag{6}
\end{equation*}
$$

Solution of this equation reads

$$
\begin{equation*}
\psi_{\epsilon}(p)=\frac{C_{\epsilon}}{\epsilon+p^{2}} e^{\left(\frac{i \alpha}{1-\epsilon \beta}\left(\frac{1}{\sqrt{\epsilon}} \arctan \frac{p}{\sqrt{\epsilon}}-\sqrt{\beta} \arctan \sqrt{\beta} p\right)\right)} \tag{7}
\end{equation*}
$$

where $\epsilon=-E$.

Properties of eigenfunctions:

- if $\epsilon>0$ then $\left\langle\psi_{\epsilon} \mid \psi_{\epsilon}\right\rangle$ exists.

Spectrum

Integrating of equation (6) gives

$$
\begin{equation*}
p^{2} \psi(p)+i \alpha \int_{-\infty}^{p} \frac{\psi(q) d q}{1+\beta q^{2}}+c[\psi]=E \psi(p) \tag{8}
\end{equation*}
$$

It looks like as an eigenvalue equation. Thus,

$$
\begin{equation*}
\frac{1}{X} \psi(p)=-i \int_{-\infty}^{p} \frac{\psi(q) d q}{1+\beta q^{2}}-\frac{c[\psi]}{\alpha} \tag{9}
\end{equation*}
$$

Substituting eigenfunction into (8) we obtain

$$
\begin{equation*}
c\left[\psi_{\epsilon}\right]=-\lim _{p \rightarrow-\infty}\left(p^{2}+\epsilon\right) \psi_{\epsilon}(p)=-C_{\epsilon} e^{\frac{-i \alpha \pi}{2(\sqrt{\epsilon}+\sqrt{\beta} \epsilon}} \tag{10}
\end{equation*}
$$

We require that $\frac{1}{X}$ to be an Hermitian operator on the set of eigenfunctions:

$$
\begin{equation*}
\left\langle\left.\frac{1}{X} \psi_{\epsilon_{1}} \right\rvert\, \psi_{\epsilon_{2}}\right\rangle=\left\langle\psi_{\epsilon_{1}} \left\lvert\, \frac{1}{X} \psi_{\epsilon_{2}}\right.\right\rangle \tag{11}
\end{equation*}
$$

As a result

$$
\begin{equation*}
\sin \left[g\left(\epsilon_{1}\right)-g\left(\epsilon_{2}\right)\right]=0 \tag{12}
\end{equation*}
$$

where

$$
g(\epsilon)=\frac{\alpha \pi}{2(\sqrt{\epsilon}+\sqrt{\beta} \epsilon)}
$$

Fixing one eigenvalue we obtain condition on the rest

$$
\begin{equation*}
\frac{\alpha}{2(\sqrt{\epsilon}+\sqrt{\beta} \epsilon)}=\delta_{0}+n \tag{13}
\end{equation*}
$$

Let us analyze case of $\delta_{0}=0$ more thoroughly. Quantization condition reads

$$
\begin{gather*}
\frac{\alpha}{2(\sqrt{\epsilon}+\sqrt{\beta} \epsilon)}=n \tag{14}\\
E_{n}=-\epsilon=-\frac{\left(1-\sqrt{1+\frac{2 \alpha}{n} \sqrt{\beta}}\right)^{2}}{4 \beta} \simeq-\frac{\alpha^{2}}{4 n^{2}}+\frac{\alpha^{3}}{4 n^{3}} \sqrt{\beta}-\frac{5 \alpha^{4}}{16 n^{4}} \beta \tag{15}
\end{gather*}
$$

where $n=1,2, \ldots$.

In general $\delta_{0} \neq 0$ and

$$
\begin{equation*}
E_{n}=-\frac{\left(1-\sqrt{1+\frac{2 \alpha}{n+\delta_{0}} \sqrt{\beta}}\right)^{2}}{4 \beta}, \quad n=0,1,2, \ldots \tag{16}
\end{equation*}
$$

Results

- The first correction to the spectrum is proportional to $\sqrt{\beta}$
- There exist several spectral families. It means that deformation does not help to avoid singularity.

